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ABSTRACT

Light scattered off particles can become linearly polarized. Stars surrounded by
oblique, co-rotating envelopes are therefore expected to manifest periodic linear polari-
metric variations. The electron scattering magnetospheres of magnetic massive stars
are expected to be suitable candidates to observe this effect. In this paper, we present
the first semi-analytical model capable of synthesizing the continuum polarimetric sig-
natures of magnetic O-type stars in an optically thin, single electron scattering limit.
The purpose of this investigation is to improve our general understanding of magnetic
hot stars by characterizing their polarimetric behaviour. Our linear polarization model
is constructed by combining the analytical expressions for the polarimetric variations
of an obliquely rotating envelope with the Analytic Dynamical Magnetosphere model
to represent a physical model for the envelope density structure. We compute grids
of model Stokes Q and U curves and show that their shapes are unique to the choice
of inclination and obliquity angles. We apply our model to HD 191612, a prototypi-
cal Of?p-type star, having both polarimetric and photometric observations. We find
that the polarimetric modulations are best reproduced with i = 19+12

−3
◦, β = 71+3

−9
◦,

and logṀB=0 =−6.11+0.12
−0.06 [M� yr−1]. These results agree with previous investigations

of this star. By combining both polarimetric and photometric synthesis tools, we si-
multaneously model the observations thus adding further refinement of the wind and
magnetic properties of HD 191612.

Key words: stars: magnetic field – stars: massive – stars: mass-loss – stars: individual:
HD 191612

1 INTRODUCTION

Magnetic massive stars are a rare class of objects. In the
search for Magnetism in Massive Stars (MiMeS), a survey
which comprised more than 100 Galactic O-type stars, a
mere 7% of the sample were found to be magnetic (Grunhut
et al. 2017). Their rarity has sparked great interest in the
massive star community. Indeed, magnetic hot stars present
a unique opportunity to investigate the dynamical inter-
actions between their inherently strong stellar winds and
magnetic fields that are theoretically predicted and observed
to lead to the formation of complex circumstellar, wind-fed
magnetospheres.

? E-mail: 16msm5@queensu.ca

In total, stellar magnetic fields have been firmly de-
tected in only 11 Galactic O-type stars. Their magnetic fields
are characteristically strong, stable and organized in a dipo-
lar or low-order multipolar configuration. From an observa-
tional standpoint, the magnetic axis has often been found
to be inclined with respect to the rotation axis of the star,
resulting in the manifestation of rotationally modulated ob-
servable quantities (e.g. Wade et al. 2011). In compliance
with the paradigm of an oblique rotator model (ORM, Stibbs
1950), such magnetospheric signatures are pivotal for diag-
nosing magnetic hot stars.

Among the known Galactic magnetic O-type stars, half
belong to the peculiar class of Of?p-type stars. Defined by
Walborn (1972), Of?p-type stars are identified by the pres-
ence of N iii λ4634 - 41 lines in emission that have compara-
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ble strengths to their neighboring C iii λ4650 lines. In order
of discovery, there are 6 known Galactic Of?p-type stars
(e.g. Walborn et al. 2010): HD 108, HD 191612, HD 148937,
NGC 1624-2, CPD-28 2561 and θ 1 Ori C. They all display
periodic variability of numerous observable quantities. As-
sociated with the rotational modulations of an obliquely ro-
tating magnetosphere, their spectroscopic and photometric
variability are commonly observed and can be successfully
interpreted within the ORM framework (e.g. Townsend &
Owocki 2005; Sundqvist et al. 2012). However, rarely is the
polarimetric variability observed and even less so compared
with theoretical models.

As unpolarized light passes through a medium it can
become partially polarized. In particular, the scattering of
star light embedded within gaseous material can produce
continuum linear polarization. Brown & McLean (1977) were
first to derive analytical expressions describing the scattered
flux produced by an optically thin, electron scattering stellar
envelope of arbitrary distribution. This approach has since
been adapted by Fox (1992) to consider obliquely rotating
envelopes - also providing semi-analytical formulae for the
characterization of their rotationally modulated polarimet-
ric variability. The obliquely rotating magnetospheres that
surround massive stars are well-suited to observe and verify
this phenomenon. However, this theory has yet to be coupled
with a physically motivated model for the density structure
of the scattering medium.

The first and currently only detection of a massive star
magnetosphere via continuum linear polarization was ac-
complished by Carciofi et al. (2013). They attempted to
model the polarimetric observations of σ Ori E, a mag-
netic Bp-type star, with the Rigidly Rotating Magneto-
sphere model (RRM, Townsend & Owocki 2005). The RRM
model is a semi-analytic approach for the magnetosphere
modelling of centrifugal magnetospheres that are typically
associated with magnetic B-type stars. Carciofi et al. (2013)
found success in reproducing the linear polarimetric variabil-
ity of σ Ori E with a corotating disk and blob model that
was physically motivated by the RRM model.

Recently, an Analytic Dynamical Magnetosphere
(ADM) model has been developed by Owocki et al. (2016)
that can quickly estimate the large-scale density, velocity
and temperature structure of dynamical magnetospheres.
Magnetic O-type stars are generally slow rotators that are
expected to harbor dynamical magnetospheres. Prior to
ADM, most massive star magnetosphere calculations were
more formally solved utilizing sophisticated 2D and 3D mag-
netohydrodynamic (MHD) simulations by ud-Doula et al.
(2008, 2009). Success in the MHD simulations have been
found in reproducing spectral variability of magnetic mas-
sive stars (e.g., Sundqvist et al. 2012; ud-Doula et al. 2013).
In conjunction, the ADM model has been shown to be in
good agreement with their MHD counterpart (Owocki et al.
2016), but with the added advantage of being far more com-
putationally efficient.

Here, we present the first magnetospheric scattering
calculations with the ADM model for polarimetric model-
ing. For this purpose, we have augmented the ADM model
with the polarimetric treatment from Fox (1992) to serve
as an ADM-based polarimetric synthesis tool. We exploit
our ADM-based polarimetric model as a diagnostic tool to
characterize the linear polarimetric variability of magnetic

massive stars. Our objective is to determine, constrain or
improve important stellar and wind parameters by match-
ing models to observations. This will contribute to better
our understanding of the wind and magnetic processes that
occur in magnetic massive stars and their immediate envi-
ronment.

The paper is organized as follows. In section 2, we will
describe the numerical model capable of producing synthetic
Q and U curves and then explore the parameter space of
the model in section 3. This will be followed by a direct
application of our model to HD 191612, a member of the
peculiar Of?p class of stars. We conclude in the final section.

2 THE NUMERICAL METHOD

The variable linear polarization produced by an ORM is hy-
pothesised to arise from the periodic change of geometry of
an aspherical envelope as it rotates around the star. Indeed,
the viewing angle dependent column density causes periodic
partial occultations of the star’s light by its own envelope
envelope.

This effect has been extensively studied by Fox (1992)
who provided analytic expressions for both Stokes Q and
U linear polarization parameters in the optically thin, sin-
gle electron scattering limit. These approximations are well-
suited for the winds of hot massive stars.

2.1 Linear polarization model

2.1.1 Arbitrary envelope

Consider a point light source embedded within an arbitrar-
ily shaped, obliquely rotating, electron envelope. We will
assume that the envelope rotates uniformly and that the
scattering medium is optically thin (i.e. single electron scat-
tering).

A series of rotation matrices must be applied to the
Stokes flux parameters in the observer’s frame, in order to
obtain them in the oblique (i.e. corotating) frame. Starting
from the oblique frame, where the magnetic axis is aligned
with an arbitrary z−axis, the sequence of transformations is:

(i) rotation by β to incline the magnetosphere and align
the rotational axis with the z−axis, where β is the obliquity
angle;

(ii) rotation by φ to rotate the envelope, where φ is the
rotational phase;

(iii) rotation by i to incline the magnetosphere and align
the observer’s line-of-sight with the z−axis, where i is the
inclination angle.

After some manipulation, the normalized linear polar-
ization Stokes parameters are given by the following equa-
tions, as in Fox (1992); however, with a misprint corrected1:

1 An error of a factor of two was noted in eqs. 5 and 6 of Fox
(1992). The corrected forms are shown in eqs. 1 and 2 of this
paper. In addition, the geometry adopted in Fox (1992) is in-
consistent with the geometry that is more commonly adopted in

Munoz et al. (2020). We therefore apply a change of variable to
eqs. 5 and 6 of Fox (1992) to be consistent with the work of Munoz
et al. (2020): β →−β and φ → φ + π/2.
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Linear polarization of magnetic hot stars 3

Q =
1
2

(τ0−3τ0γ0)
[
sin2 i(3cos2

β −1)− sin2isin2β cosφ

+ (1 + cos2 i)sin2
β cos2φ

]
+ τ0γ1

[
−sin2icosβ sinφ +(1 + cos2 i)sinβ sin2φ

]
+

1
2

τ0γ2

[
−3sin2 isin2β + 2sin2icos2β cosφ

+ (1 + cos2 i)sin2β cos2φ

]
+

1
2

τ0γ3

[
3sin2 isin2

β + sin2isin2β cosφ

+ (1 + cos2 i)(1 + cos2
β )cos2φ

]
− τ0γ4

[
−sin2icosβ cosφ +(1 + cos2 i)cosβ sin2φ

]
,

(1)

U =− (τ0−3τ0γ0)
[
sin isin2β sinφ − cos isin2

β sin2φ

]
+ τ0γ1 [sin icosβ cosφ − cos isinβ cos2φ ]

+
1
2

τ0γ2 [−2sin icos2β sinφ + cos isin2β sin2φ ]

+
1
2

τ0γ3

[
sin isin2β sinφ + cos i(1 + cos2

β )sin2φ

]
+

1
2

τ0γ4 [−sin isinβ cosφ + cos icosβ cos2φ ] ,

(2)

where τ0 and the τ0γi (i = 0,1,2,3,4) terms are weighted in-
tegral moments.

The integral moments describe the density structure of
the scattering medium. They are volume integrals that scope
the entire electron scattering region. Their explicit forms are
(see also Fox 1991)

τ0 =
σ0

2
αe

mp

∫
V

D(r)ρ(r,θ ,ϕ)
dV
r2 ,

τ0γ0 =
σ0

2
αe

mp

∫
V

D(r)ρ(r,θ ,ϕ)cos2
θ

dV
r2 ,

τ0γ1 =
σ0

2
αe

mp

∫
V

D(r)ρ(r,θ ,ϕ)sin2θ cosφ
dV
r2 ,

τ0γ2 =
σ0

2
αe

mp

∫
V

D(r)ρ(r,θ ,ϕ)sin2θ sinφ
dV
r2 ,

τ0γ3 =
σ0

2
αe

mp

∫
V

D(r)ρ(r,θ ,ϕ)sin2
θ cos2φ

dV
r2 ,

τ0γ4 =
σ0

2
αe

mp

∫
V

D(r)ρ(r,θ ,ϕ)sin2
θ sin2φ

dV
r2 ,

(3)

where σ0 = 3σT /16π, σT is the Thomson cross-section, ρ is
the envelope mass density, mp is the proton mass, αe is the
number of free baryons per electron mass, dV is the volume
element in spherical coordinates and D is the finite star de-
polarization correction factor (see below). The integral mo-
ments are typically expressed as a function of the electron
number density, ne. However, here we have re-expressed the
electron number density as a function of total mass density
via ne = αeρ/mp. For a fully ionized environment, appropri-
ate for the winds of hot stars, αe = (1 + X)/2 where X is the
hydrogen number fraction.

The γi terms describe the distribution of matter within
the electron scattering envelope. γ0 characterizes the general
shape of the envelope and ranges from 0 to 1 for an extremely
oblate envelope to an extremely prolate envelope. At the

transition from oblate to prolate, γ0 = 1/3 for a spherical
envelope. In addition, the γ1 and γ2 terms characterize the
degree of asymmetry about the equatorial plane, while the γ3
and γ4 terms characterize the degree of asymmetry within
the equatorial plane. Symmetry can greatly simplify eqs.
1 and 2. For instance, for an envelope that is spherically
symmetric, one can show that γ0 = 1/3, γ1 = γ2 = γ3 = γ4 = 0,
yielding Q = U = 0, as expected. For an envelope that is
axisymmetric, a circumstellar magnetosphere for example,
one can show that γ0 6= 1/3, γ1 = γ2 = γ3 = γ4 = 0, yielding
eqs. 4 and 5. More complex field topologies can be identified
with non-zero γi terms.

2.1.2 Axisymmetric envelope

Eqs. 1 and 2 are rather lengthy but can be applied to an ar-
bitrary envelope distribution. In the context of stellar mag-
netospheres, axial symmetry is often implied. We will now
consider a point light source embedded within an axisym-
metric envelope. In this case, all τ0γi terms vanish except for
τ0γ0. Eqs. 1 and 2 then simplify to

Q =
1
2

(τ0−3τ0γ0)
[
sin2 i(3cos2

β −1)− sin2isin2β cosφ

+ (1 + cos2 i)sin2
β cos2φ

]
,

(4)

U =− (τ0−3τ0γ0)
[
sin isin2β sinφ − cos isin2

β sin2φ

]
. (5)

For a point light source, the integral moments are con-
stants (i.e. they do not vary in phase). To consider a star of
finite size, we must include the effects of depolarization and
occultation.

Depolarization arises as a finite star correction factor
to the point light source results. The depolarization factor
was first derived analytically by Cassinelli et al. (1987) and
is given by

D(r) =
√

1− (R∗/r)2, (6)

where r is the radial distance from the center of the star
and R∗ is the radius of the star. The depolarization factor
is implemented within each of the integral moments. D(r)
rises from zero near the surface of the star to unity at large
distances (i.e. r�R∗), thus attenuating some of the polariza-
tion from the finite star case. As a result, the depolarization
factor essentially reduces the net polarization predicted from
the point light source case.

Occultation also occurs as a consequence of a finite
sized star. The presence of a finite star will cause part of
the electron scattering envelope to be occulted by the star.
As such, occulted regions will not contribute to the net po-
larization. The amount of occultation will depend on the
observer’s line-of-sight. As a consequence, in the finite star
case, the integral moments become phase-dependent and
non-zero higher-order γi terms can occur even among ax-
isymmetric scattering geometries, hence general eqs. 1 and
2 should be employed. Occulted regions of the envelope can
be removed by constraining the boundary conditions in the
volume integrals of the integral moments at each rotational
phase. However, this can only be implemented at the expense
of loosing the simplicity of an analytic model. Contrary to
the depolarization effect, there is no analytic correction fac-
tor that takes into account the occultation effect.

MNRAS 000, 1–16 (2021)
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Finally, when observations are involved, it is important
to consider the addition of interstellar polarization, QIS and
UIS. This cannot simply be added to eqs. 1 and 2 because we
do not know how the static interstellar polarization to the
target is oriented with respect to the intrinsic polarization
of the star. We must therefore apply a 2D rotation matrix
to the theoretical Stokes (Q,U) vector in order to match the
observed (Q′,U ′) vector.

2.2 Magnetosphere model

The functional relations describing the polarimetric variabil-
ity produced by an obliquely rotating electron envelope relies
on the density structure of the electron scattering medium.
To compute this in the context of an oblique magnetic ro-
tator, knowledge of the magnetosphere shape and density is
required. For this purpose, we exploit the ADM model de-
veloped by Owocki et al. (2016), an analytical model that is
designed to quickly map out the physical characteristics of
a dipolar dynamical magnetosphere.

Slowly rotating hot stars tend to develop dynamical
magnetospheres (see Petit et al. 2013). Wind plasma that
is located within closed dipole field loops becomes magnet-
ically confined and forms the foundation of a circumstellar,
rigidly rotating magnetosphere. Owocki et al. (2016) decon-
structs the physical formation of a dynamical magnetosphere
in three parts: wind outflow, hot post-shock gas and cooled
downflow. Each component is computed independently but
are superimposed as they are considered to occur simultane-
ously. There is no temporal evolution in the physical proper-
ties of the ADM magnetosphere. Instead, the ADM model is
expected to mimic the time-averaged picture of the more so-
phisticated full MHD simulations. Preliminary comparisons
of the ADM model to MHD simulations suggest that they
are in good agreement with each other (Owocki et al. 2016).

The ADM model receives numerous stellar and mag-
netic parameters as input: the effective temperature (Teff),
stellar radius (R∗), stellar mass (M∗), terminal velocity
(v∞), mass-feeding rate (ṀB=0), and dipolar magnetic field
strength (Bd). These parameters control the size and struc-
ture of the magnetosphere. A 2D slice of the magnetosphere
is then generated, typically truncated up the Alfvén radius
(RA), delimiting the maximal radial extent of wind magnetic
confinement. We rotate this image through 360◦ to obtain
a 3D data cube of the magnetosphere (with axial symmetry
implied). The electron density can then be estimated from
the total density, under the assumption of a fully ionized
wind at solar composition.

There is an additional non-physical parameter to the
ADM model that is known as the smoothing length, δ/R∗.
The smoothing length is an ad hoc parameter introduced in
the cooled downflow component to avoid singularities near
the magnetic equator. Ranging from 0 to 1, a larger smooth-
ing length corresponds to larger spatial dispersion of matter
about the equatorial plane (see section 3.1.2 for more de-
tails). In the following, we fix δ/R∗ = 0.1 to be consistent
with other ADM-based modelling works (e.g., Munoz et al.
2020; Erba et al. 2021).

We stress that the mass-loss rate encoded in ADM is in
fact the wind-feeding rate (ṀB=0), and not the actual mass-
escaping rate (Ṁ). Due to the presence of an external dipolar
field, the confined wind material does not effectively escape

the star, thus leading to a significant reduction in the global
rate of mass loss. Both parameters are related to each other
and are equally important to constrain (see section 5.1).

Each of the individual ADM components is constructed
under the premise of mass-conservation where their base
mass-flux is corrected for the presence of a dipolar field. We
performed a numerical exercise to verify that we have not
added mass to system when we have co-added the mass den-
sity of the individual ADM components. Starting from the
base of the wind (i.e. sonic point), we integrated the density
through the entire magnetosphere volume. We find that af-
ter integrating sufficiently far into the wind, the total mass
of the ADM components once added up is comparable to the
mass of the normal wind outflow of an unmagnetized star -
therefore indicating that mass has been conserved after the
implementation of a dipolar magnetic field.

2.3 Illustrative results

By coupling the ADM formalism with theoretical polariza-
tion prescriptions by Fox (1991) (see eqs. 4 and 5), we can
synthesise the linear polarization produced by magnetic hot
stars.

Consider a star of similar stellar and magnetic proper-
ties to HD 191612, i.e. Teff = 35 kK, M∗ = 30 M� , R∗ = 15 R� ,
v∞ = 2700 km s−1 , ṀB=0 = 10−6.0 M� yr−1 and Bd = 2.5 kG
(Wade et al. 2012). With the given physical parameters, the
magnetosphere spans 2RA with RA = 3.5R∗. The top panels
of Fig. 1 illustrate the computed ADM density structure of
such a star. The three components of the magnetosphere
are plotted with the magnetic axis aligned with an arbitrary
z-axis. The last (rightmost) panel corresponds to the com-
pleted simulated magnetosphere.

We can see how the ADM model portrays dipolar wind
magnetic confinement. The radiatively driven wind outflow
of the underlying star is channeled into the formation of a
torus like structure creating density enhancements about the
magnetic equator. The work of Munoz et al. (2020) verified
that even in the densest part of the magnetosphere, the op-
tically thin, single electron scattering limit still holds (i.e.
the electron scattering optical depth remains below unity).

For illustration purposes, we now impose the geometric
angles and adopt i = 30◦ and β = 60◦. The bottom panels of
Fig. 1 show the synthesized Stokes Q and U curves, plotted
in Q−U space, that are associated to the above density dis-
tribution. For simplicity, the polarimetric modulations were
computed in the point like source approximation and we
neglect interstellar polarization (i.e. QIS = 0, UIS = 0 and
Ω = 0). The last (rightmost) panel corresponds to the re-
sulting Stokes Q and U curves computed from the completed
magnetosphere.

The presented Stokes Q−U loci all have a similar shape
but different scalings. Analysing eqs. 4 and 5, we can see
that the Stokes Q and U curves share a common amplitude,
τ0−3τ0γ0. This term solely depends on the density structure
of the envelope and serves as a scaling factor to the rotational
modulations. The shape of the Stokes Q−U loci are entirely
determined by the inclination and obliquity angles. As these
angles are fixed, the only variable parameter (between the
different lower panels) is the τ0−3τ0γ0 amplitude.

Looking at the individual Stokes Q−U loci, we notice
that the polarimetric variability produced by the wind up-
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Figure 1. Top: Density structure of the three ADM components (wind upflow, cooled downflow and hot post-shock) and the resulting

co-added density. The magnetic axis is horizontal and the densities are normalized to ρw∗ = ṀB=0/4πv∞R2
∗. Bottom: Synthetic Stokes Q

and U curves corresponding to the different ADM components and the resulting Stokes Q and U curves from the co-added density. Linear
polarization curves are plotted in Q−U space, tracing the variations along a rotational period.

flow component is reversed in comparison to the variability
produced by the other magnetosphere components. This has
to do with distribution of matter within the confined mate-
rial. The wind upflow component is slightly more prolate,
yielding a negative amplitude as τ0− 3τ0γ0 < 0 (or equiva-
lently γ0 > 1/3). The cooled downflow and hot post-shock
components are more obviously oblate, yielding a positive
amplitude as τ0−3τ0γ0 > 0 (or equivalently γ0 < 1/3).

Another important observation is the contribution of
the different ADM density components to the overall polari-
metric variability. It is apparent that the cooled downflow
component constitutes the majority of the magnetosphere
density, and as a result, is the major contribution to the
linear polarization. The wind upflow component is roughly
spherical and therefore does not contribute significantly. For
the hot-post shock component, this region is smaller and
less dense in comparison to the wind downflow to produce
a significant amount of polarization. For completeness, we
consider all three components of the ADM model in our
analyses.

3 PARAMETER SPACE STUDY

In order to understand the physical implications of the free
parameters that enter into a model, it is instructive to per-
form a parameter space study. The polarimetric model we
have just described in Section 2 takes in numerous free pa-
rameters. The parameters that describe the magnetosphere
are Teff,R∗,M∗,v∞, ṀB=0 and Bd. The remaining parameters,
i and β , incline the magnetosphere to form an ORM.

We will consider a star of fixed stellar parameters but
of unknown geometric and magnetic parameters. Among
the physical properties that characterise a massive star, the

mass-loss rate is the most poorly constrained. For this rea-
son, we will also include the mass-feeding rate in our param-
eter space study.

We will also examine two different cases for treating
the central illumination source: a point source, and a light
source of finite radius.

3.1 Point light source

Illustrated in Figs. 2 and 3 are grids of Stokes Q and U curves
plotted in Q−U space. The Q−U curve tracks the variations
of Q and U along an orbital period. Each grid has i and β an-
gles varying within the set of i,β = {10,30,50,70} in degrees.
The first grid shows curves of constant Bd but varying ṀB=0.
The solid (blue), dashed (orange) and dotted (green) lines
correspond to values of ṀB=0 = {1.0×10−6,2.0×10−6,3.0×
10−6} in M� yr−1 . Similarly, the second grid shows curves
of constant Ṁ but varying Bd. The solid (blue), dashed
(orange) and dotted (green) lines correspond to values of
Bd = {2.5,5.0,7.5} in kG. The remaining physical parame-
ters are fixed to those of HD 191612 (see section 2.3 for
more details).

3.1.1 The shape of the Q−U locus

The Stokes Q−U loci are generally quasi-elliptical. As β →
0◦, the loci reduce to a single point (i.e. no variability in the
Stokes Q and U curves), while as β → 90◦, the loci are neatly
elliptical (i.e. sinusoidal variability in the Stokes Q and U
curves with unequal amplitude). From lower to higher values
of β , the Q−U loci morph from single- to double-looped and
the magnitude of the variability increases. As i→ 0◦, the loci
are neatly circular (i.e. sinusoidal variability in the Stokes
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6 M. S. Munoz et al.

Q and U curves with identical amplitude), while as i→ 90◦,
the loci fold into a parabola with a central incursion (i.e.
double-waved sinusoidal variability in the Stokes Q curve
while single-waved for the Stokes U curve). From lower to
higher values of i, the Q−U loci morph from double to single-
looped and the magnitude of the variability increases. In
short, for the parameters of HD 191612, the loci are single-
looped if β < i, yet double looped if β > i.

The pair of i and β angles therefore appear to uniquely
determine the shape of the polarimetric variability. This is
important for the capability of our method to distinguish
the geometric angles via modelling. This is not possible with
photometric modelling because the i and β angles are degen-
erate (e.g. Wade et al. 2011).

3.1.2 The amplitude of the Q−U locus

While the shapes of the Stokes Q−U loci are primarily gov-
erned by the geometric angles, the amplitude of the po-
larimetric variability is specified by the integral moments.
The amplitude is maximized when the envelope is either ex-
tremely oblate and dense. For a dipolar ORM, this can be
accomplished by either increasing the span of the magne-
tosphere or its density. These two parameters are primarily
controlled by the mass-loss rate and dipolar field strength.
On the one hand, the extent of the magnetosphere is deter-

mined by the Alfvén radius: RA ∝ B1/2
d Ṁ−1/4

B=0 (ud-Doula &
Owocki 2002). On the other hand, the density of the mag-
netosphere is primarily dependent on the wind density and
thus the mass-feeding rate: ρ ∝ ṀB=0. We can see that an
increase of either ṀB=0 or Bd will be tied to an increase in
Q−U amplitude. This general trend can be seen in Figs. 2
and 3 respectively. Indeed, we can see that a linear increase
of ṀB=0 leads to a quasi-linear increase in polarimetric am-
plitude. However, a linear increase of Bd leads to a more
modest (sub-linear) increase of amplitude. The polarimetric
amplitude is therefore far more sensitive to ṀB=0 than to
Bd.

Although not explored here, varying the smoothing
length will also affect the amplitude of the polarimetric vari-
ability. This effect was more extensively analysed by Munoz
et al. (2020) in their ADM-based photometric calculations,
also assuming single electron scattering. A larger smooth-
ing length would result in weaker polarimetric variability as
this would further smooth out the magnetosphere density
distribution. Since this quantity can be degenerate with the
mass-feeding rate, we chose to fix the smoothing length to
a conservative value of 0.1 so as to not overestimate the
mass-feeding rate.

3.1.3 The position and orientation of the Q−U locus

The Stokes Q and U curves that are displayed in Figs. 2 and
3 correspond to the intrinsic linear polarization produced
by an ORM and are computed in absence of interstellar po-
larization. When comparing the intrinsic scattered flux to
observations, it is important to incorporate the interstel-
lar polarization, QIS and UIS, and the rotation angle, Ω, to
re-orient the Q−axis from the star frame (intrinsic) to the
Q′-axis of the observer’s frame (in general aligned with the

North Celestial pole). When applied, interstellar polariza-
tion simply displaces the center of the Q−U locus, while
the rotation angle, adjusts the orientation of the Q−U lo-
cus. Neither of these quantities will affect the shape nor the
amplitude of the polarimetric variability.

3.2 Finite light source

Figs. 4 and 5 display grids of Stokes Q and U curves plotted
in Q−U space that are calculated in the finite star regime.
The layout of each grid mimics that of the single point light
source case described in section 3.1.

In most cases, the finite star correction leads to a sig-
nificant reduction in polarization amplitude. This is an ex-
pected result on account of the depolarization and occulta-
tion effects. However, in certain configurations, particularly
at low inclination angles, we note a slight increase in po-
larization percentage. This can arise from the presence of
higher order integral moments that become more important
when more material is occulted resulting from global mag-
netosphere asymmetries that are cause by occultation.

In addition, the shape of the polarization curves in the
finite star case are now skewed in comparison to the point
light source case. This is a consequence of variable occul-
tation. As the star rotates, sections of the magnetosphere
that are behind the star, as seen by the observer, are oc-
culted thus affecting the integral moments or equivalently
the amplitude of the polarimetric modulations. Contrary to
the point light source case, the amplitude of the polarimetric
variability is phase-dependent for a finite-size star.

We characterize the amplitude of the polarimetric vari-
ability with

A =
|Qmax−Qmin|+ |Umax−Umin|

4
, (7)

as defined by Wolinski & Dolan (1994). To quantify the dif-
ference between the point light source results and the finite
star results, we compare the ratios of their polarimetric am-
plitude. We define this ratio as R = Af/Ap where Af and Ap re-
spectively refer to the polarimetric amplitudes of the Stokes
Q and U curves computed for a finite star and a point light
source. Appendix Table A1 lists the amplitude ratios that
were obtained by comparing the curves in Fig. 4 to those
in Fig. 2. Similarly, Table A2 lists the amplitude ratios that
were obtained by comparing the curves in Fig. 5 to those in
Fig. 3. The amplitude ratio roughly varies from 1 to 0.5 as
function of Bd , i and β .

Cassinelli et al. (1987) was first to speculate that the
point light source approximation can overestimate the po-
larimetric variability by up to a factor of two. This statement
was then further acknowledged by Fox (1992). Depending on
the geometry and structure of the magnetosphere, we con-
firm that the polarimetric magnitude of the finite star case
can be reduced by up to 50% relative to the point light
source case, particularly when the magnetosphere is viewed
edge on with respect to the observer’s line-of-sight.

The polarimetric amplitude ratio can be used to deter-
mine correction factors to the point light source model in
order to estimate the polarimetric variability in the finite
star regime. Figs. A1 and A2 show Stokes Q and U curves
that are calculated in the point light source approximation
but scaled-down according to the corrections factors listed
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Figure 2. Grid of Stokes Q and U curves computed in the point light source approximation. The fixed parameters correspond to those of
HD 191612. Overplotted are curves of varying ṀB=0 while Bd is left constant. The solid (blue), dashed (orange) and dotted (green) lines

correspond to values of ṀB=0 = {1.0,2.0,3.0}M� yr−1 .

Figure 3. Same as Fig. 2 for varying dipolar field strength, Bd. The solid (blue), dashed (orange) and dotted (green) lines respectively

correspond to values of Bd = {2.5,5.0,7.5} kG.
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Figure 4. Same as Fig. 2 but for the finite star regime.

Figure 5. Same as Fig. 3 but for the finite star regime.
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in Tables A1 and A2. We can see that at low inclination
angles, the Q−U loci computed from the finite star case
are in acceptable agreement to the loci computed from the
scaled down point light source results. Although the depolar-
ization and occultation effects are not strictly linear, their
non-linear effects can be relatively insignificant. Neverthe-
less, for the rest of the paper, the polarimetric variability
will be computed in the finite light source regime (not from
the scaled point light source results).

4 APPLICATION TO HD 191612

HD 191612 is an Of?p-type star that has historically
been known for its spectral peculiarities that distinguish it
from other Of supergiants (Walborn 1973). Periodic, low-
amplitude, spectral variability was first noticed by Walborn
et al. (2004). Coincident magnetic field detections by Donati
et al. (2006) lead to the speculation that the variability are
of rotational nature.

Extensive monitoring of HD 191612’s spectral variabil-
ity revealed two independent periodicities: a ∼ 537 d period
related to the rotation of the star and a ∼ 1542 d related to
its orbital motion (Howarth et al. 2007). The long term bi-
nary period is not expected to significantly affect the short
term variability. We therefore assume that the variability of
HD 191612 is primarily modulated by the rotational ∼ 537
d period and not by the orbital ∼ 1542 d period.

HD 191612 was among the first stars to directly con-
firm the oblique rotator model. Wade et al. (2011) showed
that its magnetic, photometric and spectral variations are
all phase-locked with respect to the suspected rotational
period of ∼ 537 d. The observed modulations can be inter-
preted within the framework of an ORM having a dipolar
field strength of ∼ 2.5 kG and geometric angles satisfying
i + β = 95± 10◦. With photometric observations alone it is
not possible to distinguish the i and β angles. Wade et al.
(2011) demonstrated that linear polarimetric observations
could help decouple the i and β angles; however, observa-
tional data was not available at the time.

In the following subsections we will model the polari-
metric variability of HD 191612 as a novel approach to con-
strain the mass-feeding rate of the star and the magnetic
geometry of the magnetosphere. This is particularly valu-
able for massive stars as their mass-loss rates are difficult to
constrain since their actual mass-loss rates are highly sen-
sitive to wind inhomogeneities, such as clumping. We will
then revise the photometric modelling with a new data set
and finally perform a simultaneous analysis of both the po-
larimetric and photometric observations.

4.1 Fit to the linear polarization

The polarimetric observations of HD 191612 were performed
in the V -band with the IAGPOL polarimeter mounted on
the Boller & Chivens 0.6 m telescope at OPD/LNA, Brazil.
Observations and data reduction follow the scheme outlined
by Carciofi et al. (2007) and references therein. The phased
Q and U curves of HD 191612 are displayed in Fig. 6. They
vary coherently in a sinusoidal-like fashion. We immediately
note, based on the results of 3, that both Stokes Q and U
curves are double-waved, indicating that β > i. To model

the linear polarization of HD 191612, we utilize the phys-
ical parameters that have been derived by Howarth et al.
(2007) and Wade et al. (2011): Teff = 35 kK, R∗ = 14.5 R� ,
M∗ = 30 R� and v∞ = 2700 km s−1 and Bd = 2.5±0.4 kG. We
phase the polarimetric data according to the updated Hα

ephemeris and period given by Wade et al. (2011): JD =
2453415.1(5)±537.2(3) ·E.

We fit eqs. 1 and 2 to the linear polarimetric observa-
tions. We carried out the fits using emcee, a Markov-Chain
Monte Carlo fitting package (Foreman-Mackey et al. 2013).
Further details on the fitting procedure are provided in sec-
tion 5.2. The MCMC-fitted Q and U curves are illustrated
in 6 and the MCMC-fitted parameters are listed in table 1
(see Fig. B1 for a mosaic of the likelihood distributions).

We find that the polarimetric variability is best repro-
duced with a magnetic dipole model where i = 18+10

−3
◦ and

β = 72+3
−9
◦. We obtain a magnetic geometry that is compat-

ible with the results of Wade et al. (2011) where i and β

were previously constrained to the family of solutions obey-
ing i + β = 95± 10 ◦. In this previous analysis, the i and β

angles could not be constrained independently as the mag-
netic geometry was inferred from observational diagnostics
(in this case the longitudinal field strength) that rely on the
observer’s line-of-sight angle. The variation of the magnetic-
axis with respect to the observer’s line-of-sight is given by:

cosα = cosβ cos i + sinβ sin icosφ , (8)

where φ is the rotational phase. We can see that the i and β

angles are interchangeable in eq. 8 and are thus degenerate.
However, when modelling the linear polarization, the results
for the Stokes Q and U curves are unique to i and β angles
so that they can be determined independently.

Here, we have designed the linear polarimetric synthe-
sis tool as mass-feeding rate estimator. We obtain a mass-
feeding rate of logṀB=0 =−6.14+0.13

−0.12 [ M� yr−1 ]. This value
is comparable to what was previously obtained from spec-
troscopic modeling. Indeed, Howarth et al. (2007) had re-
ported a clumped mass-loss rate of ∼ log

√
fclṀB=0 =−6.10

[ M� yr−1 ] from the Hα line where fcl is the clumping factor.
Furthermore, fitting the measured linear polarization

curves allows us to estimate the amount of interstellar polar-
ization. We obtain QIS = 0.49+0.02

−0.02% and UIS =−0.73+0.02
−0.02 %,

corresponding to a polarization percentage of PIS = 0.88+0.02
−0.02

%, with a position angle of θIS = 62+9
−9
◦. Here the polariza-

tion percentage and position angle are respectively defined
by

PIS =
√

Q2
IS +U2

IS, (9)

and

θIS = 0.5arctan(UIS/QIS). (10)

According to the stellar polarization catalogue compiled by
Heiles (2000), a star within the vicinity of HD 191612 (less
than 0.7 degrees in separation) has a polarization percentage
of PIS = 0.550±0.180 % and a position angle of θIS = 64.0±
9 ◦. The position angle is in excellent agreement with our
results for HD 191612.

The linear polarization observations and modeling pro-
vide a qualitatively new confirmation of the magnetic
oblique rotator model for HD 191612.
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Figure 6. Phased Stokes Q and U parameters for HD 191612. The MCMC-fitted curve is overplotted in red (bold solid curves). Sample

curves that span the 1 σ error bars on the MCMC-fitted parameters are overplotted in gray (thin solid lines).

Table 1. MCMC-fitted parameters to the linear polarimetry of HD
191612

i β MB=0 QIS UIS Ω

[deg] [deg] [ M� yr−1 ] [%] [%] [deg]

18+10
−3 72+3

−9 −6.14+0.13
−0.12 0.49+0.02

−0.02 −0.73+0.02
−0.02 36+5

−5

4.2 Fit to the KELT photometry (revised)

Hipparcos observations for HD 191612 were obtained from
1990 to 1993 (Perryman et al. 1997). The phased, folded
light curve has been previously analysed and modelled by
Munoz et al. (2020). The recently developed photometric
modelling tool is another single electron scattering model
that stems from the ADM model, along the same line as
the polarimetric modelling tool. In their work, the mass-
feeding rate was fixed to constrain the dipole field strength
and magnetic geometry. With a mass-feeding rate fixed
to 10−6.1 M� yr−1 2, they obtained the following MCMC-
fitted parameters to the magnetic geometry: i + β = 88+5

−8
◦,

|i−β |= 33+26
−33

◦, corresponding to the couple of possible so-

lutions (i,β ) = (27+13
−14
◦,61+13

−11
◦), and Bd = 2.7+0.6

−0.4 kG. Here,
we fix the magnetic field strength and attempt to model the
more recently acquired KELT (Kilodegree Extremely Little
Telescope, Pepper et al. 2007, 2012) light curve as a means
to constrain the mass-feeding rate and magnetic geometry.
We note that the dipole field strength and mass-fed rate
are not typically fit simultaneously as they are degenerate
quantities.

KELT is a ground-based system that consists of two

2 A factor of two was unintentionally omitted in the wind density
equation of Munoz et al. (2020) in their implementation of the

ADM formalism. While the mass-feeding rate was intended to

be fixed at 10−5.8 M� yr−1 (e.g. Howarth et al. 2007), the mass-
feeding rate was in fact fixed to 10−6.1 M� yr−1 with the factor of

two in the density taken into consideration.

telescopes in the North and South hemispheres. Its primary
objective is to search for transiting exoplanets around bright
stars. The KELT observations for HD 191612 span from May
30th, 2007 to November 25th, 2014, while the Hipparcos data
set spans from November 28th 1989 to February 27th, 1993.

Phasing the KELT light curve according to the
ephemeris and period of Wade et al. (2011) reveals a co-
herent sinusoidal-like curve (see Fig. 7) that matches the
shape and amplitude of the phased Hipparcos light curve
(also see Fig. 8 at Munoz et al. 2020). This suggests that
the system has remained stable for over two decades. The
main advantage of using the KELT phased light curve is
that the inherent dispersion is considerably reduced in com-
parison to the noise present in the Hipparcos phased light
curve. The only drawback of using the ground-base KELT
data set, instead of the space-based Hipparcos data set, is
that the sampling is irregular, which can lead to significant
gaps in the rotational phase coverage.

We adopt a fitting procedure similar to the work of
Munoz et al. (2020). The MCMC-fitted curve to the KELT
observations is illustrated in Fig. 7 (see also Fig. B2 for
a mosaic of the likelihood distributions). With a magnetic
field strength fixed to Bd = 2.5 kG, we constrain the mag-
netic geometry and mass-feeding rate to i + β = 89+5

−8
◦, |i−

β | = 16+16
−11
◦ - corresponding to the couple of possible so-

lutions (i,β ) = (36+7
−12
◦,52+6

−5
◦) - and logṀB=0 = −6.02+0.13

−0.05
[ M� yr−1 ] (see table 2). These results are not only in agree-
ment with the MCMC-fitted parameters to the Hipparcos
photometry, but also appear to be more precise, notably in
the i and β angles (i.e. decrease in uncertainty range). This
is likely due to the reduced scatter in the KELT light curve,
however, the i and β angles still remain degenerate and can-
not be individually identified.
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Figure 7. Phased raw (filled circles) and binned (open circles)

KELT light curve for HD 191612. The MCMC-fitted curve is over-

plotted in red (bold solid curves). Sample curves that span the 1
σ error bars on the MCMC-fitted parameters are overplotted in

gray (thin solid lines).

Table 2. MCMC-fitted parameters to the KELT photometry of

HD 191612

i + β |i−β | i or β i or β ṀB=0 ∆m†
0

[deg] [deg] [deg] [deg] [ M� yr−1 ] [mmag]

89+5
−8 16+16

−11 36+7
−12 52+6

−5 −6.02+0.13
−0.05 8086+1

−1

† ∆m0 refers to a constant horizontal offset in the photo-

metric light curve.

4.3 Simultaneous fit to the photometry and polarimetry

By simultaneously fitting models to the photometric and
polarimetric observations, we may be able to provide ad-
ditional constraints on the wind and magnetic parameters
of HD 191612. For instance, with photometric modelling, it
is not possible to distinguish the i and β angles from each
other, whereas this is not an issue for polarimetric mod-
elling. Even though both observables rely on electron scat-
tering, the photometric variability is primarily sensitive to
the line-of-sight optical depth, whereas the polarimetric vari-
ability takes into consideration the entire size and shape of
the magnetosphere. As a result, the photometric and po-
larimetric measurements probe different aspects of the mas-
sive star magnetosphere that may more sensitively test the
predictions of the model and help relieve some degeneracy
between the model parameters.

Our simultaneous fitting of the linear polarization and
photometry will include 1) the Hipparcos light curve alone,
2) the KELT light curve alone, and 3) a combination of both
the Hipparcos and KELT data. The Hipparcos light curve
has regular and complete phase sampling, while the KELT
light curve has better precision. Combining the two data sets
will therefore be beneficial for improving the phase coverage
and signal to noise ratio.

The results of the simultaneous fits performed are
recorded in Table 3. The MCMC-fitted values are all con-
sistent with each other. The corresponding MCMC-fitted

curves are displayed in Figs. 8, 9 and A1 (see Figs. B3, B4
and B5 for a mosaic of the likelihood distributions). It is
encouraging to see that a single model can simultaneously
reproduce both the photometric and polarimetric variabil-
ity. The simultaneous fitting efforts did in fact relieve the
degeneracy between the i and β angles: we were able to rule
out the solution with i > β derived from the photometric
modelling as it is not consistent with the characteristics of
the polarimetric variation.

5 DISCUSSION

5.1 Orthogonal constraints on the mass-loss rate

The stellar rate of mass loss is an important yet poorly con-
strained parameter among massive stars. This quantity can
be computed from theoretical line-driven wind models, but
is more commonly inferred from observational spectral di-
agnostics. For instance, Hα and UV diagnostics are widely
used empirical mass-loss rate estimators.

Observational mass-loss rate determination tools are
generally grouped in two categories: ρ-dependent processes
and ρ2-dependent processes. ρ2-dependent diagnostics (e.g.
Hα recombination line) are more sensitive to wind inhomo-
geneities than ρ-dependent diagnostics (e.g. UV resonance
lines). As most mass-loss rate diagnostics operate under the
assumption of a smooth wind, thus ignoring the presence of
clumped density enhancements, ρ2 diagnostics have been
found to systematically yield larger mass-loss rates than
ρ diagnostics (Fullerton et al. 2006). This led to the his-
torical introduction of the clumping factor, fcl, reconciling
discordant ρ and ρ2 mass-loss rate estimates. The clump-
ing factor is in fact a measure of small-scale wind inho-
mogeneities or clumps that effectively lead to a decrease in
the inferred rate of mass loss for ρ2 diagnostics, such that
Ṁunclumped = fclṀclumped.

For HD 191612, early Hα diagnostics performed by
Howarth et al. (2007) returned a mass-loss rate of 1.6×10−6

M� yr−1 , while UV diagnostics by Marcolino et al. (2013)
yielded 1.3×10−8 M� yr−1 - more than two orders of magni-
tude lower than the optical result. We stress that these early
reported values were inferred from non-magnetic models. In-
deed, they respectively relied on FASTWIND (Puls et al.
2005) and CMFGEN (Hillier & Miller 1998) models to per-
form the radiative transfer - both of which assume a spheri-
cally symmetric wind, completely ignoring the magnetically
confined wind structure. Although the use of non-magnetic
models is likely a key cause of the above-mentioned discrep-
ancy in mass-loss rate, Marcolino et al. (2012) stated that
it is important to consider the radial extent of the spectral
line-formation regions. In fact, UV lines are formed signifi-
cantly farther out in the wind than optical lines, and likely
encompass the Alfvén radius. As a result, UV line diagnos-
tics may in fact be probing the rate of mass loss farther out
in the wind where the wind is significantly quenched due to
the presence of the magnetic field.

HD 191612’s observable quantities have recently been
revisited using more appropriate magnetic models. In fact,
an ADM-based Hα line synthesis algorithm has recently
been applied to HD 191612 (Owocki et al. 2016; Driessen
et al. 2019). Preliminary results by Driessen et al. (2019)
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Figure 8. From top to bottom: phased Hipparcos light curve, Stokes Q and U curves. The MCMC-fitted curve, obtained from simultaneously

fitting the photometric and polarimetric variability, are overplotted in red (bold solid curves). Sample curves that span the 1 σ error

bars on the MCMC-fitted parameters are overplotted in gray (thin solid lines).

Table 3. MCMC-fitted parameters to the photometry and polarimetry for HD 191612

Photometric data included i β logṀ ∆m0 QIS UIS Ω

[deg] [deg] [ M� yr−1 ] [mmag] [%] [%] [deg]

HIP 21+7
−6 68+6

−8 −6.14+0.06
−0.06 −7.9+0.04

−0.04 0.49−0.02
+0.02 −0.73−0.02

+0.02 36+5
−5

KELT 25+4
−4 66+4

−5 −6.10+0.07
−0.06 −15.2+2.6

−2.8 0.49−0.02
+0.02 −0.73+0.03

−0.02 35+6
−6

Both 24+5
−5 66+5

−5 −6.11+0.06
−0.07 −13.8+3.2

−3.1 0.49−0.02
+0.02 −0.73+0.02

−0.02 36+6
−6

were able to reproduce the observed EW curve with a
clumped mass-feeding rate of 1.1×10−6 M� yr−1 . They em-
phasize that the absolute mass-loss rate is expected to be
much lower once corrected for wind clumping and magnetic
wind-trapping. In parallel, an ADM-based UV line synthesis
codes have been developed by Hennicker et al. (2018) and
Erba et al. (2021). Their findings confirm that spherically
symmetric UV line models cannot be used to accurately de-
rive the wind parameters of magnetic hot stars, thus high-
lighting the importance of considering non-spherical wind
outflows. A mass-feeding rate of 1.1× 10−6 M� yr−1 was
adopted by Hennicker et al. (2018) to match theoretical UV
resonance-line profiles to the observations.

Returning to the ADM-based polarimetric tool de-
scribed in this paper and the previously developed ADM-
based photometric tool (Munoz et al. 2020), they are both
ρ-dependent models and are therefore insensitive to clump-
ing. When applied independently on HD 191612, we ob-
tained rather large confidence intervals and distorted like-

lihood distributions (see Fig. B1 and B2). By combining the
tools into a single model, some degeneracy is lifted which
further constrains the model input parameters. This ex-
plains why the uncertainties in the model parameters are
decreased in the simultaneous fits and why the likelihood
distributions are rather Gaussian-like, including the obliq-
uity and inclination angles (see Fig. B5). It is even more
reassuring to see that both electron scattering observational
diagnostics are compatible with a common mass-feeding rate
of logṀB=0 = −6.11+0.06

−0.07 [ M� yr−1 ]. In addition, using the
Vink et al. (2001) recipe, we obtain a theoretical mass-
feeding rate of 10−6.1 M� yr−1 for HD 191612 that is also
in agreement with our modelling results.

The mass-feeding rates constrained above do not repre-
sent the effective mass-escaping rate. According to ud-Doula
et al. (2008), the dipolar escaping wind fraction (for a non-
rotating star) corresponds to

fB = 1−
√

1− R∗
Rc

, (11)
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Figure 9. Same as Fig. 8, but with the KELT light curve.

Figure 10. Same as Fig. 8, but with the combined Hipparcos and KELT light curve.

MNRAS 000, 1–16 (2021)



14 M. S. Munoz et al.

where Rc is the radius of the last closed loop. The overall
magnetic reduction in mass-loss rate is then characterised
by fB where Ṁ = fBṀB=0. Adopting Rc ∼ RA, an Alfvén ra-
dius of ∼ 3.5R∗ corresponds to a wind quenching of ∼ 0.15.
The quenched mass-lass rate for HD 191612 would there-
fore be reduced by almost an order of magnitude, to 10−6.9

M� yr−1 .

5.2 Error assessment

We achieved acceptable fits to the polarimetric variability of
HD 191612 within the uncertainty of the available data. Our
fits were obtained via MCMC methods, where 100 walkers
were initialized, each accomplishing over 1000 steps after dis-
regarding 500 burn-in steps. We adopted a standard Gaus-
sian posterior function where the variance (i.e. the error in
the data) is underestimated by some fractional amount, f .
The MCMC-fitted model parameters were determined from
the peaks likelihood distributions and the confidence inter-
vals were estimated at the 68% levels.

Wolinski & Dolan (1994) investigated the confidence
intervals of polarimetrically determined inclination angles
among binary systems. They noticed a statistical bias to-
wards higher inclination angles. In other words, inclination
angles that are derived via polarimetric observations are
more likely to be overestimated if the data suffered from
large uncertainties. This is an expected result: as the noise
of the Q and U curves increases, a straight line becomes a
more acceptable fit corresponding to i→ 90◦. To counteract
this statistical bias, higher signal-to-noise data is therefore
required.

An analogous statistical bias will thus be present among
magnetic oblique rotators. However, in this case, the statis-
tical bias will affect both the magnetic obliquity and the
inclination. As β → 0◦, the Stokes Q and U curves tend to a
straight line, regardless of the inclination angle. As i→ 0◦,
the amplitude of the parametric variability is minimal. Thus
in general, noisy data will have a statistical bias towards
lower obliquity and inclination values (see also Fox 1992).

For HD 191612, the quality of the fit mostly suffered
from a lack of data points, not from a lack precision. In
fact, the double-waved Stokes Q and U curves were sampled
with less than a dozen data points. More polarimetric ob-
servations obtained at different epochs would therefore be
beneficial to the diagnostic precision.

5.3 Rotation vs binarity

The polarimetric variability of an obliquely rotating enve-
lope can be functionally expressed as a 2nd order Fourier
sum in the point light source approximation. By rearrang-
ing the terms in eqs. 1 and 2, the Stokes Q and U parameters
rewrite to

Q = q0 + q1 cos(λ )+ q2 sin(λ )+ q3 cos(2λ )+ q4 sin(2λ ), (12)

and

U = u0 + u1 cos(λ )+ u2 sin(λ )+ u3 cos(2λ )+ u4 sin(2λ ), (13)

where the qi and ui (i = 0,1,2,3,4) terms are Fourier coeffi-
cients.

Prior to Fox (1992), linear polarimetric modulations

were often thought to be indicative of binary motion. In-
deed, Brown et al. (1978) had already derived general ex-
pressions characterizing polarisation scattering among bi-
nary systems, in particular, WR+O binaries (e.g. Drissen
et al. 1986; St. -Louis et al. 1988) and X-ray binaries (e.g.
Rudy & Kemp 1978; Dolan 1992). Such variability can also
be expressed in the form of a truncated first and second
order Fourier series, equivalent to eqs. 12 and eqs. 13.

Fox (1992) pointed out the similarities between their
own expressions for ORMs and those of Brown et al. (1978)
for binary stars. It turns out that binary motion can often
be misinterpreted as rotational motion or vice versa, at least
to a first-order approximation. Though the functional forms
are indeed analogous, they differ by their physical meaning,
notably in the interpretation of the qi and ui terms. However,
we note that in the finite star regime, the secondary effects
produced by occultations can produce higher order harmonic
variations and asymmetries in the Q−U loci that are unique
to rotational motion and thus distinguishable from orbital
motion.

By simultaneously fitting eqs. 12 and 13 to observa-
tions, we can determine the Fourier coefficients that best de-
scribe the observed linear polarization for HD 191612. This
is known as the Fourier coefficient method and has been
commonly applied in past studies for binary systems where
the fits are typically performed via a minimum least-squares
method such as a Levenberg-Marquardt algorithm.

The advantage of the Fourier coefficient method lies in
its simplicity to obtain a curve of best-fit. We can obtain
a seemingly adequate simultaneous fit to the Stokes Q and
U curves for HD 191612. However, a major drawback is the
loss of a physically motivated model. This is because the
qi and ui terms are fit as independent parameters, when in
reality, the Fourier coefficients are all interdependent on the
geometric angles and the integral moments. This can lead to
fits that are nonphysical in the framework of an ORM (or
binary system). In fact, for HD 191612, the best-fit qi and
ui terms does not represent a physical system when trying
to solve for i, β and Ω. The fitting routine that we have
adopted here (see section 4 for details) is therefore better
suited for extracting the physical model parameters for an
obliquely rotating magnetosphere.

In a generic system, spectroscopic observations are
therefore necessary to rule out binary-induced variability.
For HD 191612, the rotational period is well constrained via
spectroscopy such that we are confident that the polarimet-
ric variability is indeed related to the ORM (see Howarth
et al. 2007).

6 CONCLUSION

A light source embedded within an obliquely rotating en-
velope can give rise to phase-dependent linear polarimetric
variability. In this paper, we have developed a simple semi-
analytical model designated to estimate the observable lin-
ear polarization of magnetic hot stars.

We assume that the electron scattering opacity is re-
sponsible for the major contribution of linear polarization -
an appropriate assumption for most hot stars. In this con-
text, we utilize the analytical Stokes Q and U prescriptions
of Fox (1992), derived under the assumption of an optically-
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thin, Thomson scattering envelope irradiated by a central
source. To approximate the linear polarization produced
from an obliquely rotating magnetosphere, we exploit the
analytic dynamical magnetosphere model by Owocki et al.
(2016) to describe the scatterer’s distribution.

We applied our ADM-based polarimetric tool to re-
produce the polarimetric signatures of the Galactic Of?p-
type star, HD 191612. We were able to constrain its mass-
feeding rate and magnetic geometry. By coupling this tool
with a previously developed ADM-based photometric tool
(see Munoz et al. 2020), we obtained orthogonal constraints
on the fundamental wind and magnetic parameters of HD
191612. Our results are consistent with previous findings,
but with increased precision. Polarimetric modelling con-
firms the expected wind density and magnetic confinement
from the theory, and therefore is a useful complement to the
photometric modelling of this class of stars.

We acknowledge that we have interpreted the linear po-
larimetric variations of a HD 191612 within a first-order ap-
proximation, i.e single electron scattering. A more accurate
depiction would entail a more sophisticated radiative trans-
fer algorithm, including multiple scatterings, NLTE effects
and other sources of opacity. Future work will therefore in-
volve comparing our simplistic approach to more sophisti-
cated modelling.

Although we have shown just one direct application that
benefited from linear polarimetric modelling, we have show-
cased the ADM model as an attractive alternative method
for magnetospheric modelling and have opened the gateway
for numerous other applications to stem from this work. Un-
fortunately magnetic massive stars possessing broadband,
linear polarimetric observations are limited. Obtaining more
observational data would be essential to further explore the
capabilities of the ADM model and the linear polarimetric
add-on.
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Table A1. Amplitude ratios obtained when comparing the Stokes
Q and U curves from Fig. 2 to those from Fig. 4

Input parameters Amplitude Ratio
ṀB=0 i β

M� yr−1 [deg] [deg]

1×10−6 10 10 1.15

10 30 1.10
10 50 0.93

10 70 0.76

30 10 1.14
30 30 0.89

30 50 0.72

30 70 0.61
50 10 1.08

50 30 0.64

50 50 0.57
50 70 0.56

70 10 0.93

70 30 0.71
70 50 0.77

70 70 0.62

2×10−6 10 10 1.14

10 30 1.10

10 50 0.93
10 70 0.73

30 10 1.2

30 30 0.90
30 50 0.70

30 70 0.59
50 10 1.10

50 30 0.63

50 50 0.51
50 70 0.97

70 10 0.70

70 30 0.75
70 50 0.65

70 70 0.59

3×10−6 10 10 1.20

10 30 1.14
10 50 0.93
10 70 0.72

30 10 1.25

30 30 0.90
30 50 0.68

30 70 0.56

50 10 1.16
50 30 0.60

50 50 0.48
50 70 0.49
70 10 0.99

70 30 0.69
70 50 0.64

70 70 0.57
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Figure A1. Comparison of Stokes Q and U curves computed in the point light source approximation but reduced by the amplitude ratio
in A1 (solid) to curves computed in the finite star regime (dashed). Overplotted are curves of varying ṀB=0 while Bd is left constant. The

blue, orange and green lines correspond to values of Ṁ = {1.0,2.0,3.0}M� yr−1 .

Figure A2. Comparison of Stokes Q and U curves computed in the point light source approximation but reduced by the amplitude ratio

in A2 (solid) to curves computed in the finite star regime (dashed). Overplotted are curves of varying ṀB=0 while Bd is left constant. The

blue, orange and green lines correspond to values of ṀB=0 = {1.0,2.0,3.0}M� yr−1 .
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Figure B1. Likelihood distributions for the model parameters of Fig. 6. Contours are drawn at the 16%, 50% and 84% probability levels
and the MCMC-fitted parameters are indicated by the solid (blue) lines.
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Figure B2. Likelihood distributions for the model parameters of Fig. 7. Contours are drawn at the 16%, 50% and 84% probability levels
and the MCMC-fitted parameters are indicated by the solid (blue) lines.
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Figure B3. Likelihood distributions for the model parameters of Fig. 8. Contours are drawn at the 16%, 50% and 84% probability levels
and the MCMC-fitted parameters are indicated by the solid (blue) lines.
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Figure B4. Likelihood distributions for the model parameters of of Fig. 9. Contours are drawn at the 16%, 50% and 84% probability levels
and the MCMC-fitted parameters are indicated by the solid (blue) lines.

MNRAS 000, 1–16 (2021)



22 M. S. Munoz et al.

Figure B5. Likelihood distributions for the model parameters of Fig. 10. Contours are drawn at the 16%, 50% and 84% probability levels
and the MCMC-fitted parameters are indicated by the solid (blue) lines.
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Table A2. Amplitude ratios obtained when comparing the Stokes
Q and U curves of Fig. 3 to those of Fig. 5

Input parameters Amplitude Ratio
Bd i β

[kG] [deg] [deg]

2.5 10 10 0.709

10 30 0.693

10 50 0.650
10 70 0.583

30 10 0.691

30 30 0.671
30 50 0.638

30 70 0.605

50 10 0.649
50 30 0.629

50 50 0.625
50 70 0.632

70 10 0.596

70 30 0.605
70 50 0.701

70 70 0.641

5.0 10 10 0.719
10 30 0.705

10 50 0.669

10 70 0.611
30 10 0.703

30 30 0.687

30 50 0.658
30 70 0.628

50 10 0.667
50 30 0.649

50 50 0.645

50 70 0.653
70 10 0.621

70 30 0.629

70 50 0.726
70 70 0.677

7.5 10 10 0.719

10 30 0.706
10 50 0.673

10 70 0.620

30 10 0.705
30 30 0.690

30 50 0.663
30 70 0.635

50 10 0.671

50 30 0.655
50 50 0.650

50 70 0.659
70 10 0.628
70 30 0.636
70 50 0.716

70 70 0.675
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